

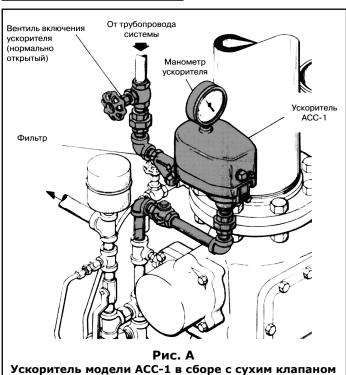
УСКОРИТЕЛЬ МОДЕЛИ АСС-1

для спринклерных воздушных клапанов модели DPV-1

DRY PIPE VALVE ACCELERATOR EXTERNAL RESETTING QUICK OPENING DEVICE MODEL ACC-1

for dry pipe valve model DPV-1

ОБЩЕЕ ОПИСАНИЕ


Ускоритель модели АСС-1 (рис. A) является быстродействующим устройством, которое может

использоваться со спринклерными воздушными ("сухими") клапанами модели DPV-1 4" и 6" с целью сокращения времени открытия клапана при срабатывании одного или нескольких автоматических спринклерных оросителей. Ускоритель автоматически адаптируется к небольшим и к медленным колебаниям давления в спринклерной системе, но срабатывает при быстром и устойчивом падении давления (что происходит при вскрытии спринклера). При срабатывании ускоритель подает давление из системы в промежуточную камеру сухого клапана. Благодаря этому уменьшается разность давлений, удерживающая клапан в закрытом состоянии, и напор воды в подводящем трубопроводе становится достаточным для открытия входной заслонки клапана.

Ускоритель ACC-1 имеет уникальное встроенное устройство изоляции ускорителя от попадания воды и поплавок, которые предназначены для предотвращения попадания воды и инородных тел в высокочувствительные рабочие области ускорителя. При

срабатывании ускорителя (при вскрытии спринклера) устройство изоляции ускорителя немедленно закрывается и блокируется в закрытом положении, не дожидаясь установления давления в промежуточной камере сухого клапана. Способность самоблокировки удерживает устройство изоляций ускорителя в закрытом положении даже во время слива воды из системы.

Поплавок перекрывает входное отверстие управляющей камеры ускорителя при случайном открытии сухого клапана, которое может произойти, например, в случае отказа воздушного компрессора с одновременным медленным уменьшением давления в системе из-за утечки воздуха.

СЕРТИФИКАЦИЯ

Клейма FM, UL.

Сертификат соответствия техническому регламенту о требованиях пожарной безопасности: № C-IL.ПБ34.В.00174 (действителен до 08.04.2012г.).

Внимание!

Ускоритель модели АСС-1 должен устанавливаться и эксплуатироваться в соответствии с требованиями данного документа. Несоблюдение требований данного документа может привести к выходу оборудования из строя.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Ускоритель модели АСС-1 предназначен для эксплуатации при максимальном давлении воды в подво-

дящем трубопроводе 12,05 атм. и максимальном давлении воздуха/азота в системе 4,13 атм. Ускоритель представляет собой небольшое легкое устройство,

включающее в себя дифференциальную камеру малого объема для быстрого заполнения, фильтрующий металлический ограничитель, который обеспечивает высокую чувствительность устройства, внутреннее устройство изоляции ускорителя от воды, которое немедленно изолирует ускоритель при его открытии, поплавок и дренаж линии связи с трубопроводом системы.

Ускоритель срабатывает, если давление воздуха в системе снижается со скоростью более 1psi в минуту. График зависимости времени открытия ускорителя от объема трубопроводов системы приводится на рис. В (для начального давления воздуха в системе 20, 40 и 60 psi). Время открытия в особенно сложных системах и в системах с трубопроводами малого диаметра может быть несколько больше указанного на рис. В. Сухой клапан открывается немедленно после открытия ускорителя.

Внимание!

Быстродействие ускорителя не гарантирует, что вся система пожаротушения будет обладать требуемым быстродействием (определяемым с момента открытия испытательного вентиля). При проектировании необходимо учитывать тот факт, что быстродействие системы пожаротушения прежде всего определяется конфигурацией и объемом трубопроводов, давлением воздуха в системе в момент открытия ускорителя и характеристиками водопитателя.

Компоненты ускорителя представлены на рис. С. Основание, крышка, пластина верхней диафрагмы и центральная пластина отлиты из алюминиевого сплава A356.0-Т6 (по ASTM B26 или B108) и после обработки покрыты алодином (Alodine) в соответствии с MIL-C-5541C. Внешние поверхности основания и крышки окрашены в красный цвет. Все другие металлические

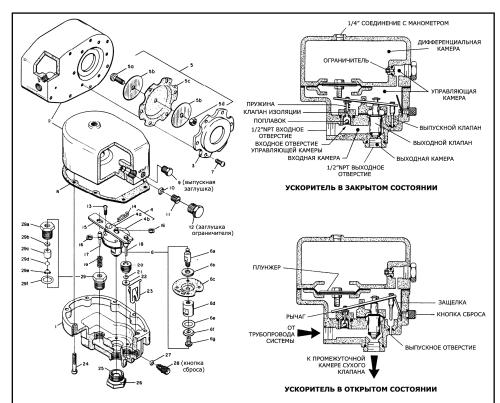
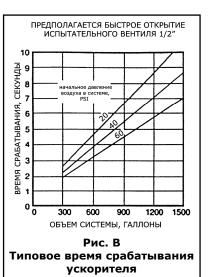



Рис. С Сборочный чертеж ускорителя

Рис. D Ускоритель в открытом и закрытом состояниях

Νō	Описание	Νō	Описание	Νō	Описание	Νō	Описание	
1	Основание	а	Верхняя заглушка	14	Шплинт	26	Уплотнительное кольцо*	
2	Крышка	b	Шайба	15	Рычаг	27	Уплотнительное кольцо*	
3	Пластина верхней диафрагмы	С	Нижняя диафрагма	16	Стопорная шайба	28	Головка сброса	
4	Узел центральной пластины	d	Нижняя заглушка	17	Клапан изоляции	29	Узел направляющей втулки клапана изоляции и поплавка	
а	Конический штифт	е	Уплотнительное кольцо*	18	Выпускной клапан	а	Втулка	
b	Центральная пластина	7	Винт с полукруглой головкой 1/4"x20UNCx5/8" (6 шт.)	19	Пружина	b	Прокладка	
5	Плунжер	8	Прокладка	20	Направляющая втулка выпускного клапана	С	Направляющая	
а	Винт	9	Заглушка из нерж. стали ¼"	21	Уплотнительное кольцо	d	Поплавок	
b	Шайба верхней диафрагмы	10	Уплотнительное кольцо*	22	Шайба	е	Скоба	
С	Верхняя диафрагма	11	Ограничитель	23	Защелка	f	Уплотнительное кольцо*	
d	Гайка	12	Заглушка из нерж. стали 1/2"	24	Винт ¼"x20UNCx1-3/8" (8 шт.)	* H	* Необходимо небольшое количество	
6	Выходной клапан	13	Винт 110-32UNFx5/8" (4 шт.)	25	Выходная втулка	фторсиликоновой смазки.		

детали изготовлены из аустенитной нержавеющей стали, ограничитель - из закаленной нержавеющей стали, верхняя и нижняя диафрагмы, уплотнение входного отверстия управляющей камеры и уплотнительные кольца (кроме уплотнительного силиконового кольца выпускного клапана) - из резины EPDM, прокладка крышки из неопрена, поплавок - из полипропилена. Серийный номер и последние цифры года выпуска ускорителя выштампова-

ПРИНЦИП ДЕЙСТВИЯ

ны на правой стороне основания.

Входная камера ускорителя (рис.D – закрытое состояние) находится под давлением воздуха системы

(через соединение в точке выше максимального ожидаемого уровня заполнения клапана с учетом притока дренажных вод). Давление в управляющую камеру поступает через входное отверстие этой камеры, которое представляет собой зазор вокруг нижнего наконечника клапана изоляции ускорителя. При увеличении давления в управляющей камере через ограничитель давление поступает и в дифференциальную камеру ускорителя. Ускоритель находится в закрытом состоянии, когда к нему подается давление, а также когда давления во входной, управляющей и дифференциальной камерах уравновешиваются. При этом выходная камера блокируется выходным клапаном, который удерживается на месте с помощью пружины, действующей через рычаг, и с помощью силы давления в управляющей камере.

Небольшие и медленные колебания давления в системе проходят через ограничитель. Однако при быстром и устойчивом падении давления в системе (т.е. при падении давления во входной и управляющей камерах) давление в дифференциальной камере уменьшается со значительно медленнее. Таким образом создается сила, опускающая плунжер, который поворачивает рычаг. При повороте рычага выпускной клапан поднимается из выпускного отверстия и клапан изоляции прижимается к входному отверстию управляющей камеры. Затем давление воздуха в системе (т.е. давление во входной камере) поднимает выходной клапан, что также приводит к повороту рычага до закрытого (фиксированного) положения (рис. D). Так как выходной клапан поднят из выходного отверстия, то давление из системы поступает в промежуточную камеру усхого клапана, в результате уменьшается разность давлений, удерживающая сухой клапан закрытым. После открытия сухого клапана крупные примеси, содержащиеся в воде, задерживаются фильтром во входном отверстии ускорителя. Вода и мелкие примеси (например, ил) не попадают в управляющую камеру благодаря клапану изоляции ускорителя, который перекрывает входное отверстие. Обратный клапан, расположенный ниже выходного отверстия ускорителя,

После того как ускоритель и сухой клапан сработали и вода из спринклерной системы была слита в дренаж, вода из линии между трубопроводом системы и ускорителем также должна быть слита. Ускоритель должен быть приведен в исходное состояние и проверен согласно инструкциям раздела "Процедура приведения в исходное состояние". Для этого достаточно отвернуть головку сброса до упора, после чего плотно ввернуть ее обратно.

предотвращает проникновение в ускоритель примесей с водой из соединения с промежуточной камерой сухого клапана.

Величина расхода через ограничитель установлена таким образом, что ускоритель обеспечивает максимальную чувствительность к уменьшению давления в системе при срабатывании спринклера, компенсируя в то же время нормальные колебания давления в системе, вызванные, например, изменением температуры окружающей среды.

ГАРАНТИЯ

Поставщик гарантирует отсутствие дефектов в материалах и технологии изготовления оборудования в течение **одного года** со дня отгрузки оборудования (гарантийного периода).

Bec: Ускоритель ACC-1 – 6,62 кг Обвязка – 3,65 кг

ОФОРМЛЕНИЕ ЗАКАЗА

Указать модель и комплектность (наличие обвязки).