Пожарная безопасность электроустановок. Классификация взрывоопасных смесей


Введение

Вещества, способные образовывать взрывоопасные смеси с воздухом (горючие газы, легковоспламеняющиеся жидкости, горючие пыли), имеют различные физико-химические свойства и показатели пожарной опасности, которые существенно влияют как на вероятность их воспламенения от тех или иных источников зажигания, так и на параметры взрыва.

К этим показателям относятся:

  • теплота сгорания;

  • температура самовоспламенения;

  • минимальная энергия зажигания;

  • период индукции.

Зависят они от химического состава и строения веществ. Поэтому, для исключения возникновения взрыва и пожара от источников зажигания, связанных с эксплуатацией электрооборудования, оно (электрооборудование) должно быть специально сконструировано для безопасного использования в конкретной среде, имеющей определённые показатели пожарной опасности.

В различных отраслях промышленности используется большое количество взрывоопасных веществ. Разрабатывать и изготавливать взрывозащищенное электрооборудование применительно к каждому из таких веществ невозможно. В то же время, использовать во всех случаях взрывозащищенное электрооборудование, рассчитанное на применение в наиболее опасных условиях, экономически нецелесообразно (такое оборудование значительно дороже).

Все это обусловило необходимость классификации взрывоопасных смесей по степени их опасности.

Таким образом, одной лишь классификации взрывоопасных зон на классы для правильного выбора электрооборудования недостаточно, и при выборе электрооборудования для взрывоопасных зон следует учитывать не только класс зоны, но и физико-химические свойства взрывоопасных смесей. Это требование нашло своё отражение в Техническом регламенте о требованиях пожарной безопасности [2]:

Статья 50. Способы исключения условий образования в горючей среде (или внесения в нее) источников зажигания

1. Исключение условий образования в горючей среде (или внесения в нее) источников зажигания должно достигаться одним или несколькими из следующих способов:

1) применение электрооборудования, соответствующего классу пожароопасной и (или) взрывоопасной зоны, категории и группе взрывоопасной смеси ;

Статья 82. Требования пожарной безопасности к электроустановкам зданий и сооружений

1. Электроустановки зданий и сооружений должны соответствовать классу пожаровзрывоопасной зоны, в которой они установлены, а также категории и группе горючей смеси.

12. Взрывозащищенное электрооборудование допускается использовать в пожароопасных и непожароопасных помещениях, а во взрывоопасных помещениях – при условии соответствия категории и группы взрывоопасной смеси в помещении виду взрывозащиты электрооборудования.

 

1. Классификация взрывоопасных смесей газов и паров с воздухом  

Взрывоопасные смеси газов и паров с воздухом классифицируются по категориям и группам . В ПУЭ [3] классификация ВОС приведена по ГОСТ 12.1.011-78. До введения стандартов на взрывозащищенное электрооборудование классификация ВОС проводилась по ПИВРЭ (1967 г.) и ПИВЭ (1960 г.)

 

1.1. Классификация по категориям  

Взрывоопасные смеси газов и паров подразделяются на категории в зависимости от величины безопасного экспериментального максимального зазора (БЭМЗ) и значения соотношения минимальных токов воспламенения классифицируемой смеси и метана ( МТВ ).

БЭМЗ ( п. 7.3.25 ПУЭ ) – максимальный зазор между фланцами оболочки, через который не происходит передача взрыва из оболочки в окружающую среду при любой концентрации смеси в воздухе.

БЭМЗ представляет собой максимальный зазор между двумя частями камеры, состоящей из полусфер с фланцами длиной 25 мм, исключающий воспламенение внешней смеси газа или пара в воздухе при воспламенении этой смеси внутри камеры.

  1   - внутренняя камера;  

2 -   внешняя камера;  

3 -   микрометрический винт;  

4 -   насос;  

5 -   смотровые окна;  

6 -   верхняя подвижная часть внутренней камеры;  

7   - нижняя неподвижная часть внутренней камеры;  

8 -   электроды, между которыми возникает искровой разряд;  

9 -   краны;  

10 –   огнепреградитель

 

 

Рис. 1 Испытательная установка по   ГОСТ Р 51330.2-99

Испытательная установка состоит из внутренней и внешней камер. Внешняя камера оборудована смотровыми окнами. Внутренняя камера состоит из двух полусфер с кольцевым зазором между ними. Обе камеры заполняют испытуемой смесью при нормальном давлении 0,1 МПа и температуре 20 0 С. Воспламеняют смесь во внутренней камере и о наличии или отсутствии воспламенения во внешней камере судят на основании наблюдения через смотровые окна.

БЭМЗ определяют путем постепенного уменьшения кольцевого зазора до такого значения, при котором не происходит воспламенение смеси во внешней камере для любых концентраций газа или пара в воздухе ( ГОСТ Р 51330.2-99. Электрооборудование взрывозащищенное. Часть 1. Взрывозащита вида «взрывонепроницаемая оболочка». Дополнение 1. Приложение D . Метод определения безопасного экспериментального максимального зазора ).

Классификация взрывоопасных смесей по категориям в зависимости от БЭМЗ приведена табл.1

Таблица 1 

По ПИВЭ и ПИВРЭ

По ПУЭ

Вещества

Категория ВОС

Критический зазор, мм

Категория ВОС

БЭМЗ, мм

1

> 1

I

> 1

Рудничный метан

2

Более 0,65 до 1

II A

Более 0,9

Промышленные газы и пары

3

Более 0,35 до 0,65

II B

Более 0,5 до 0,9

4

0,35

II C

0,5

 

Минимальный воспламеняющий ток (МВТ) – ток в электрической цепи, вызывающий воспламенение взрывоопасной смеси с вероятностью 10 -3 при испытаниях с использованием искрообразующего механизма ( по ГОСТ Р 51330.4-99 ).

Классификация взрывоопасных смесей по категориям в зависимости от соотношения МВТ классифицируемой смеси и метана по ГОСТ Р 51330.11-99 приведена в таблице:

 

Категория ВОС

МВТ ВОС /МВТ метана

IIA

Более 0,8

IIB

От 0,45 до 0,8 включительно

IIC

Менее 0,45

 

Для классификации большинства ВОС по категориям достаточно применения одного из показателей (БЭМЗ или МВТ). Оба показателя необходимо определять в следующих случаях:

  1. если МВТ составляет от 0,45 до 0,5 или от 0,8 до 0,9 – необходимо дополнительно определять БЭМЗ;

  2. если БЭМЗ составляет от 0,5 до 0,55 – необходимо дополнительно определять МВТ.

 

1.2. Классификация по группам

 

В основу классификации ВОС по группам положена температура самовоспламенения смеси. Чем ниже эта температура, тем вероятнее воспламенение смеси при всех прочих равных условиях по сравнению со смесью, у которой температура самовоспламенения выше.

Температура самовоспламенения взрывоопасной газовой смеси – наименьшая температура окружающей среды, при которой в условиях специальных испытаний наблюдается самовоспламенение взрывоопасной газовой смеси.

Классификация взрывоопасных смесей по группам приведена в таблице:

 

Группа ВОС

Температура

самовоспламенения, С

Группа ВОС

Температура

самовоспламенения, С

По ПИВЭ

По ПУЭ и ПИВРЭ

А

Выше 450

Т1

>450

Б

Выше 300 до 450

Т2

Выше 300 до 450

Г

Выше 175 до 300

Т3

Выше 200 до 300

Д

Выше 120 до 175

Т4

Выше 135 до 200

 

 

Т5

Выше 100 до 135

 

 

Т6*

100

*Группа Т6 введена ПУЭ, и при классификации по ПИВРЭ не применяется.

 

1.3. Порядок определения категории и группы ВОС  

Категория и группа ВОС может определяться по табл. 1 ГОСТ Р 51330.19-99 (МЭК 60079-20-96) или по табл. 7.3.3 ПУЭ.

При использовании табл. 1 ГОСТ Р 51330.19-99 в ней необходимо найти вещество, образующее ВОС, его БЭМЗ и Т св . Далее по найденным характеристикам определяются категория и группа ВОС с использованием таблиц 7.3.1 и 7.3.2 ПУЭ.

При использовании табл. 7.3.3 ПУЭ достаточно найти в ней вещество, образующее ВОС, и по 1 и 2 колонкам соответствующей строки определить категорию и группу смеси.

 

2. Классификация взрывоопасных пылевых сред

Определения, применяемые при классификации взрывоопасных пылевых сред:

Пыль – среда, включающая в себя как горючую пыль, так и горючие летучие частицы.

Горючая пыль – твердые частицы номинальным размером 500 мкм или менее, которые могут гореть или тлеть в воздухе, образовывать взрывоопасную смесь с воздухом при атмосферном давлении и нормальной температуре.

Взрывоопасная пылевая среда – смесь с воздухом, при атмосферных условиях, горючих веществ в виде пыли или летучих частиц, в которой после воспламенения происходит самоподдерживающееся распространение пламени.

В зависимости от крупности частиц пыли и её электропроводности, пылевоздушные взрывоопасные смеси делятся на 3 категории :

 

Категория ВОС

Название

Определение

IIIA

Горючие частицы

Волокна и летучие частицы номинальным размером более 500 мкм

IIIB

Неэлектропроводящая пыль

Горючая пыль, электрическое сопротивление которой более 10 3 Ом·м

IIIC

Электропроводящая пыль

Горючая пыль, электрическое сопротивление которой равно или менее 10 3 Ом·м

 

Кроме того, для правильного выбора электрооборудования в зонах образованием взрывоопасных пылевоздушных смесей должны учитываться:

  1. для пылей, способных к тлению, – температура тления пыли:

Т тл < (Т max . оборуд. – 50) ( 0 С) ( п. 7.3.63 ПУЭ );

  1. для пылей, не способных к тлению, – температура самовоспламенения пыли:

Т с.в. ≥ 1,5×Т max . оборуд. ( п. 7.3.63 ПУЭ ).

 

3. Пример определения категории и группы взрывоопасных смесей

Для примера приведу наиболее знакомые большинству людей взрывоопасные смеси бензина и дизельного топлива, которые реализуется на АЗС. Согласно табл. 7.3.3 ПУЭ смеси паров данных веществ с воздухом имеют следующие категории и группы:

  • бензин: категория IIA , группа Т2;

  • дизельное топливо (при температуре вспышки менее 61 ºС): категория II В, группа Т3.

Теперь вопрос: в какой из двух указанных смесей требуется применение электрооборудования с более высоким уровнем защиты? На первый взгляд ответ очевиден: бензин (ведь он гораздо более взрывоопасен). Но вышеприведённые данные, как это не покажется странным, свидетельствуют об обратном: категория смеси бензина II А – наименее опасная из всех промышленных газов и паров (БЭМЗ более 0,9 мм), группа смеси Т2 – допускает нагрев поверхности электрооборудования аж до 300 °С; что же касается дизтоплива, то категория смеси II В – более опасная, а группа смеси Т3 допускает нагрев только до 200 °С. Объясняется это тем, что бензин имеет гораздо более высокую температуру самовоспламенения, чем дизтопиво, а теплота сгорания (и, как следствие, давление взрыва) у него меньше.

Из этого следует, что взрывозащищённое электрооборудование, которое можно использовать во взрывоопасных зонах, образованных парами дизтоплива, можно использовать и в зонах, где обращается бензин. Напротив – электрооборудование для бензина использовать в зонах с дизельным топливом нельзя, т.к. оно может послужить источником зажигания взрывоопасной смеси даже при штатной работе.

 

 

Литература:

  1. Черкасов В.Н., Костарев Н.П. Пожарная безопасность электроустановок: учебник. – М.: Академия ГПС МЧС России, 2002. -377 с.

  2. Федеральный закон № 123-ФЗ от 22.08.2008 «Технический регламент о требованиях пожарной безопасности».

  3. Правила устройства электроустановок. СПб.: Издательство ДЕАН, 2003. – 928 с.

  4. ГОСТ Р 51330.19-99 (МЭК 60079-20-96). Электрооборудование взрывозащищенное. Часть 20. Данные по горючим газам и парам, относящиеся к эксплуатации электрооборудования.

  5. ГОСТ Р МЭК 60079-0-2007. Взрывоопасные среды. Часть 0. Оборудование. Общие требования.

  6. Корольченко А.Я., Корольченко Д.А. Пожаровзрывоопасность веществ и материалов и средства их тушения. Справочник: в 2-х ч. – 2-е изд., перераб. и доп. – М.: Асс. «Пожнаука», 2004.

  7. ГОСТ 12.1.044-89. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения.

  8. ГОСТ Р МЭК 61241-1-1-99. Электрооборудование, применяемое в зонах, опасных по воспламенению горючей пыли. Часть 1. Электрооборудование, защищенное оболочками и ограничением температуры поверхности. Раздел 1. Технические требования.

  9. ГОСТ Р МЭК 61241-1-2-99. Электрооборудование, применяемое в зонах, опасных по воспламенению горючей пыли. Часть 1. Электрооборудование, защищенное оболочками и ограничением температуры поверхности. Раздел 2. Выбор, установка и эксплуатация.

  10. ГОСТ Р 51330.2-99. Электрооборудование взрывозащищенное. Часть 1. Взрывозащита вида «взрывонепроницаемая оболочка». Дополнение 1. Приложение D. Метод определения безопасного экспериментального максимального зазора.

  11. ГОСТ Р 51330.11-99. Электрооборудование взрывозащищенное. Часть 12. Классификация смесей газов и паров с воздухом по безопасным экспериментальным максимальным зазорам и минимальным воспламеняющим токам.

 

Статью прислал: inzhener

Статьи по теме

Доступно о пожарной безопасности
Огневая полоса психологической подготовки
Опубликовано: 13 июля, 2017

Для грамотной подготовки пожарных, отработки определенных навыков и действий до автоматизма, постоянного контроля и была придумана огневая полоса психологической подготовки, широко известная как огневая полоса...

Для того, чтобы добавить комментарий, авторизуйтесь.